On-Orbit Servicing and Beyond: A Canadian Perspective

Jean-Claude Piedbœuf
Deputy Director
Spacecraft Engineering, Space Technologies
Canadian Space Agency
DLR/CSA Workshop on On-Orbit Servicing, Cologne, Germany Nov. 24-26, 2002

Why On-Orbit Servicing?

- It's 3am, on a highway going in Abitibi, north of Canada, a tractor-trailer breaks down on the side of the road...
- The Ground Solution:
 - Send in a Servicing Vehicle!
- The Space Solution:
 - Write off the Truck as a total loss
 - Abandon the cargo & collect insurance
 - Leave the Driver for the wolves
Why On-Orbit Servicing?

- Why is Abandonment the Norm?
 - Cannot reach the satellite
 - launch vehicle shortages
 - Replacement cost same or lower than repair
 - Unable to fix current satellites on-orbit
- Space servicing architecture needed to reduce cost

On-Orbit Servicing & Assembly

- Important thrust in CSA Tech. Req. Doc.
- Scenarios defined for horizon up to 30 years
 - Potential missions or activities
- Focus on technologies required
 - Robotics and intelligent systems
 - Miniaturisation
 - Communication
0-5 yrs: MSS Ground Control

- Ground control of MSS using pre-scripted operation sequences
 - Wake-up procedure
 - Automatic trajectory
 - Capture of payloads
- For safety, autonomy limited to reactive actions
- RT supervision from ground
 - Decisions taken on the ground
- Ground segment equipped for:
 - Calibration of the MSS sensors
 - Fault-detection based on telemetry data
5-10 yrs: Cooperative Spacecrafts

- Chaser with special tools capture satellites
 - designed to be serviced or not
- Ground teleoperation but more autonomy
 - e.g. navigation and inspection
- Free-flyer relocates satellite on a new orbit
 - Refuelling or by adding new bus
- Servicing part of design for new satellites
- Service spacecraft put microsatellites in orbit
 - Reduce launch mass

10-20 yrs: Servicing & Assembly

- Robotic spacecrafts collaborate autonomously to perform complex tasks
 - Capture of uncontrolled spinning satellites
 - Build simple space structure
 - Clean space debris
- On-orbit refuelling and upgrading is common
- Many spacecrafts servicable
 - Specialized EE exist to capture others
- Satellites designed with upgradable modules
 - e.g. communication satellites T/R module
- Dexterity and level of intelligence is now enough to permit maintenance and repair
- Network of robotic spacecraft collaborate
 - Inter-spacecraft communication: optical
10-20 yrs: Preparing for Human

- Cost of unmanned space systems is coming down considerably
- Launch is main driver for high costs
- Space based resources is underway:
 - Fuel generation
 - Space manufacturing of simple structures
- Technologies to support permanent human presence in space:
 - Radiation protection
 - Medical diagnosis

20-30 yrs: Spaceship Assembly

- Colony of heterogeneous robot is used to build the first manned spaceship for exploration
- Wireless communication allows exchanges of robot sensor data and sharing of computation resources among the robots
- Collaboration of robots to perform advanced tasks:
 - Grasping
 - Assembling
 - Moving of structures
- Some robots are dedicated to quality assurance to insure the proper ship assembly
- Pico-satellites reporting to the robots are used for inspection and detection of potential problems
- First LEO hotel is being constructed using space-based resources
30 yrs+: Large Structures

- Building big solar power structures more common
- Intelligent robotic spacecraft colonies
 - No operator in the loop required
 - Autonomous planning and execution
- Knowledge sharing within colony
- Robotic S/C recombine to form new topologies
- Robotic S/C life increased with the self-diagnostic/repair capability

Back to the Present
Orbital Express Program

- Increasing interest of US Air Force in space servicing
 - Change orbit of defence satellites on-demand
 - Refuelling capability needed

$100 million contract for Phase II of Orbital Express program to Boeing Phantom Works

MDR part of the team to develop autonomous techniques for:
 - On-orbit re-supply
 - Upgrading
 - Refuelling
 - Satellites reconfiguration
MicroSatellite Capability / Architecture

- Orbital Express ASTRO vehicle can provide bus functions to MicroSatellites
 - Maneuverability / orbit raising
 - Power
 - Communications
 - Attitude control
- More satellite mass devoted to payload

Canadian Developments

- Focused on enabling technologies
- Ground control technologies
- New arm/docking mechanisms
- Vision for rendez-vous & docking
- Simulation & experimental validation

DLR/CSA On-Orbit Servicing Workshop, Nov. 24-26, 2002
Presentation by J.-C. Piedboeuf, copyright Canadian Space Agency 2002
Robotics Ground Operations

- Simplify space robot operation
 - Not enough crew time available
 - Issue with MSS is safety
- Existing ground control technologies
 - Canada: IIRO/ROSA (MDR-CSA)
 - Germany: Rotex/Marco (DLR)
 - ESA: Dream (Trasys in Belgium)
- MSS Ground Control
 - Operation concept for March 2003
 - Independent safety monitoring
 - Space demonstration: SSRMS

Autonomous Robotics & Ground Operation

- R&D platform to test advance concepts for autonomous robotics and ground operation
- Applications: increase autonomy
 - MSS ground control
 - On-orbit robotics
 - Planetary rovers.
- Implementation on CART
 - SPDM likes operation
 - On-orbit servicing
Existing Docking Mechanisms

- Orbiter Docking System (NASA) and Adroynous Peripheral Assembling System (Russia)
- Capture mechanism of ETS-VII (NASDA)
- LEE & PDGF (CSA/MDR)

New Docking Mechanisms

- MD Robotics end-effector
- Michigan Aerospace Corporation docking mechanism
- DLR Capture Mechanism
- Starsys three-fingered grappling and docking mechanism
Vision Systems for Space

- Key Canadian technology for space robotics
- New generation (target free)
 - Laser Camera System (Neptec)
 - robust versus lighting condition
 - tested on Space Shuttle 2001
 - Object Recognition and Pose Estimation (MD-Robotics)
 - based on natural features
 - LIDAR System (Optech)

Experimental validation

- Hardware-in-the-loop simulation of spacecrafts servicing
- Capture of a floating object
Hardware-in-the-Loop Verification

- Hardware-in-the-loop simulation of spacecrafts docking using SMT robot

Other Testbeds

- 6 dof parallel platform for higher bandwidth, positions accuracy, and payload capacity
- Japanese facility for full scale satellite rendezvous testing
Modeling & Simulation

- Simulation required for
 - Operation and predictive control
 - Training and on board training
- Simulators developed:
 - MSS Operation and Training Simulator
 - SYMOFROS: CSA environment for modeling, simulation, control and real-time implementation

Contact Dynamics Simulation

- MDR Contact Dynamic Toolkit: simulation
 - Non-real time
 - Real-time
 - Parameter identification still issue
- Advanced research in contact dynamics
 - Contact Detection
 - Contact Response
 - Numerical Integration
- Experimental verification
Conclusion

- On-orbit servicing & assembly
 - Promising potential
 - Next commercial business
- Required concerted efforts
 - Technologies
 - Satellite developer
 - Satellite operator
- Canada investing in enabling technologies

QUESTIONS?