On-Orbit Servicing (OOS)
Issues & Commercial Implications

Presentation 05

Session IAA3.1
54th IAC
Bremen 29 Sept - 03 Oct 2003

by J. Kreisel
JKIC - Germany
Status Quo?

- OOS Activities for Decades: But Not as “OOS”!
- 30+ Projects Worldwide = 1000+ Man Years p.a.
- No Commercial OOS Yet (“ORC” on the Move)
- Space A&R Technology in Place
- OOS Business Drivers NOT Yet Understood!
- Potential OOS Market 1.000 MEUR p.a.
- Co-Operative Satellite Design
- Too Early to Judge on OOS!
- Changes to Culture & Mindset
- Paradigm Shift

“S2S” Business!

Multi-Level Complexity!
Does It Matter?

Satellite Population
(500+ kg, non-military)
- Orbit
- Type of Satellite
- Type of Operator
- Life Cycle

Satellite Failures
- Cause
 - Technical
 - Other (Impact
- Occurrence (Life Cycle)
- Probability
- Propagation!

Impact on Operator (Threat)
(Mission: Business Case vs. Project)
- Total Loss
- Partial Loss

Value of Correction?

Individual Case!
Alternatives

State of the Satellite
• Tumbling Mode +/-!
• Communication
• Power
• Propellant …

Non-OOS
• Design (Redundancy)
• Technical (Workarounds, S/W)
• Business Model
 • Spare
 • Switch/Lease
 • New Satellite Launch
 • Insurance Claim

Space A&R Capabilities!

Service?
Services

<table>
<thead>
<tr>
<th>Service Class</th>
<th>Kind of Service</th>
<th>Co-Op. Satellite Design</th>
<th>Supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion</td>
<td>• Re-Orbiting</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>• De-Orbiting</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>• Salvage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manipulation</td>
<td>• Maintenance</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>• Repair</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>• Retrofit</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>• Docked Inspection</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>• Remote Inspection</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drivers
- Service Needs (No.)
- Frequency
- A&R Task (Servicer)
- Orbit & Plane
- Responsiveness
 - Scheduled
 - Emergency
- Logistics (Supplies)

Mission Architecture

COST!
Stakeholders

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Benefits</th>
</tr>
</thead>
</table>
| Commercial Satellite Operators | • Profit (Revenues!)
• Deferred CAPEX |
| Insurance Companies | • Risk Reduction
• **Premium Policy & Market** |
| Satellite Manufacturers | • Design Feedback
• Servicer Production/Economy of Scale
• Co-Operative Satellite Design |
| Space Agencies | • Demonstration in Space
• **Space Infrastructure Development**
• Commercialization |
| Governments | • **Knowledge Base**
• Budget Efficiency & Economic Growth |
| Science Community | • Safeguarding Projects |
| Launch Service Providers | • No. & Frequency of Launches |
| Space A&R Community | • Various |
| Intl. & Regulatory Bodies | • Debris, Orbital Clean-Up, Frequency |
| Suppliers | • Innovation & Standardization
• Economy of Scale |

Hard Factors
- Market
- Budget/Profit
- Cost-Benefit
- Structures
- Processes
- Technology
- Demonstration

Soft Factors
- Culture
- Mindset
- Psychology
OOS Challenges

Business

• Potential Market p.a.:
 • 500-1,000 MEUR/100-150 Services

• Target Market Segment
 • Orbit/Plane, Customer, Type of Satellite
 • Multiple vs. Single Servicing (Servicer Design)
 • High vs. Low Value Services
 • Co-Operative Satellite Design

• Systems Engineering
 • Mission Architecture/Logistics
 • Servicer Design & A&R

• Business Engineering
 • Demonstration & Launching Customer
 • Business Model (Stake & Shareholders)
 • Financial Feasibility (Financing Strategy)

Focus

• Agencies
 • Technology
 • Demonstration
 • Non-Technical!

• OOS Providers
 • 1st Movers, ORC
 • Business Acumen

• Space Sector
 • “OOS” as Topic
 • Awareness
 • Sound Homework

• CAPEX & Cost
• Revenue Model
Implication & Opportunities?

Satellite Design?
- Reliability (Redundancy, etc)
- Life Time
- Subsystems & Components

↑ Co-Operative Design
↑ Serviceability

↓ Cost?
↓ Mass/Volume?
No. of Satellites?

Service Missions
- Service Vehicles
- Logistic Platforms
- Launches

↓↓ Insurance
Operators Case

Science Community
Agencies Gov’ts

Manufacturers
- Launchers, Satellites, Platforms

Launcher Selection

LSPs

Suppliers
- Economy of Scale

JOERG KREISEL
International Consultant

54th IAC - Bremen 29 Sept-03 Oct 2003 - Session IAA3.1 - Paper 05
©2003 - JKIC

DO NOT COPY OR DISTRIBUTE WITHOUT PERMISSION
Website:
www.on-orbit-servicing.com